skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Faenza, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Singh, M.; Williamson, D. (Ed.)
    Birkhoff’s representation theorem defines a bijection between elements of a distributive lattice L and the family of upper sets of an associated poset B. When elements of L are the stable matchings in an instance of Gale and Shapley’s marriage model, Irving et al. showed how to use B to devise a combinatorial algorithm for maximizing a linear function over the set of stable matchings. In this paper, we introduce a general property of distributive lattices, which we term as affine representability, and show its role in efficiently solving linear optimization problems over the elements of a distributive lattice, as well as describing the convex hull of the characteristic vectors of lattice elements. We apply this concept to the stable matching model with path-independent quotafilling choice functions, thus giving efficient algorithms and a compact polyhedral description for this model. To the best of our knowledge, this model generalizes all models from the literature for which similar results were known, and our paper is the first that proposes efficient algorithms for stable matchings with choice functions, beyond extension of the Deferred Acceptance algorithm. 
    more » « less